Exercise 8.4.5

Nicolai Siim Larsen

02407 Stochastic Processes

We consider a geometric Brownian motion $\left\{X_{t}\right\}_{t \geq 0}$, which describes the spot price of a stock for a certain company. We are given the drift and variance parameters of the geometric Brownian motion, specifically $\alpha=-0.1$ and $\sigma^{2}=4$.

An investor buys a share of this stock at the current spot price of $\$ 100$. We denote this as $X_{0}=100$. We seek the probability that the investor will profit from the investment, i.e. that the stock price reaches $\$ 110$ before it reaches $\$ 95$. To this end, we will apply Theorem 8.3.

We therefore define the random variable T as on p. 426,

$$
T=\inf \left\{t \geq 0: \frac{X_{t}}{X_{0}} \in\left\{\frac{95}{100}, \frac{110}{100}\right\}\right\}
$$

Theorem 8.3 then yields that

$$
\begin{aligned}
\mathbb{P}\left(\frac{X_{T}}{X_{0}}=\frac{110}{100}\right) & =\frac{1-(95 / 100)^{1-2 \alpha / \sigma^{2}}}{(110 / 100)^{1-2 \alpha / \sigma^{2}-(95 / 100)^{1-2 \alpha / \sigma^{2}}}} \\
& =\frac{1-(95 / 100)^{1-2(-0.1) / 4}}{(110 / 100)^{1-2(-0.1) / 4}-(95 / 100)^{1-2(-0.1) / 4}} \\
& =0.3325
\end{aligned}
$$

